
Match case

The switch statement
As said before, Python has no switch statement. This means this code in PHP:

switch ($language) {
case 'French':

$hello = 'Bonjour';
break;

case 'German':
$hello = 'Hallo';
break;

case 'Italian':
$hello = 'Ciao';
break;

case 'Spanish':
$hello = 'Hola';
break;

default:
$hello = 'Hello';

}

would be represented like this in Python:

if language == 'French':
hello = 'Bonjour'

elif language == 'German':
hello = 'Hallo'

elif language == 'Italian':
hello = 'Ciao'

elif language == 'Spanish':
hello = 'Hola'

else:
hello = 'Hello'

An efficient and more elegant alternative in this example would be to just use an associative array
in PHP or a dictionary in Python.

hello_list = {
'French': 'Bonjour',
'German': 'Hallo',
'Italian': 'Ciao',
'Spanish': 'Hola',

}

hello = hello_list.get(language, 'Hello')

But this simple example is just to talk about switch statements and match cases.

128

Both solutions (the switch statement in PHP and the if/elif/else syntax in Python) have drawbacks.
They're not so elegant and PHP's switch statement is not type-safe.

$x = 12;

switch ($x) {
case true:

echo 'Yes';
break;

default:
echo 'No';

}

// 'Yes'

The variable is compared with == instead of === , and $x == true returns true .

In both languages, a recent match case construct appeared (PHP 8 and Python 3.10). Python has a
more evolved match case, but we will first see how similar they are.

Replacing switch with match
Let's take the previous switch example and use the match case instead.

$hello = match ($language) {
'French' => 'Bonjour',
'German' => 'Hallo',
'Italian' => 'Ciao',
'Spanish' => 'Hola',
default => 'Hello',

};

match language:
case 'French':

hello = 'Bonjour'
case 'German':

hello = 'Hallo'
case 'Italian':

hello = 'Ciao'
case 'Spanish':

hello = 'Hola'
case _:

hello = 'Hello'

Two first differences can be spotted. First, Python's match case is not an expression, which means
you cannot assign its result directly to a variable contrary to PHP. Second, the default case is
represented by case _ .

Both PHP and Python's match cases are type-safe.

129

Combined cases

$hello = match ($language) {
'French', 'Belgian French' => 'Bonjour',
'German', 'Austrian German' => 'Hallo',
'Italian' => 'Ciao',
'Spanish' => 'Hola',
default => 'Hello',

};

match language:
case 'French' | 'Belgian French':

hello = 'Bonjour'
case 'German' | 'Austrian German':

hello = 'Hallo'
case 'Italian':

hello = 'Ciao'
case 'Spanish':

hello = 'Hola'
case _:

hello = 'Hello'

Unions are represented with a pipe (|) in Python, but a comma (,) in PHP.

Pattern matching
Now let's talk about what the match case in Python has more than the PHP version.

Python's match case allows pattern matching (it could actually become a part of a future PHP
version too).

Let's consider a function to which we pass a few datetime-related arguments, and it tells us what
parts we passed.

def dissect_time(*dt):
match dt:

case [year]:
print('We know the year')

case [year, month]:
print('We know the year and the month')

case [year, month, day]:
print('We know the year, the month and the day')

case [year, month, day, *others]:
print(

'We know the year, the month,' \
' the day, and some time data'

)

dissect_time(2020) # We know the year
dissect_time(2020, 4) # We know the year and the month
dissect_time(2020, 4, 22) # We know the year, the month and the day
We know the year, the month, the day, and some time data
dissect_time(2020, 4, 22, 22, 30)

130

https://wiki.php.net/rfc/match_expression_v2#pattern_matching
https://wiki.php.net/rfc/match_expression_v2#pattern_matching

First, we pack the received parameters in a tuple. Then we match each pattern according to the
number of arguments.

Patterns in patterns
We can go further. We can match only specific values while doing pattern matching.

Let's say we want a function to tell the time. The first argument should only be AM or PM , and we can
give some parts of the time.

def tell_time(*time):
match time:

case [('AM'|'PM'), hour]:
print(f'It is {hour}')

case [('AM'|'PM'), hour, minute]:
print(f'It is {hour}:{minute}')

case [('AM'|'PM'), hour, minute, second]:
print(f'It is {hour}:{minute}:{second}')

case _:
print('Invalid time')

tell_time('AM', 8) # It is 8
tell_time('AM', 8, 22) # It is 8:22
tell_time('PM', 8, 22, 42) # It is 8:22:42
tell_time('FOO', 8, 22, 42) # Invalid time
tell_time(8, 22, 42) # Invalid time

As you can see, we can use the matching values between parentheses split with pipes (|).
If we give invalid parameters, we fallback on the default (_) case.

Now, what if we want to know if it's indeed AM or PM ? Right now, in our code there is no way to
access the first matched parameter.

To do so, we need to use the as keyword.

def tell_time(*time):
match time:

case [('AM'|'PM') as dayperiod, hour]:
print(f'It is {hour} {dayperiod}')

case [('AM'|'PM') as dayperiod, hour, minute]:
print(f'It is {hour}:{minute} {dayperiod}')

case [('AM'|'PM') as dayperiod, hour, minute, second]:
print(f'It is {hour}:{minute}:{second} {dayperiod}')

case _:
print('Invalid time')

tell_time('AM', 8) # It is 8 AM
tell_time('AM', 8, 22) # It is 8:22 AM
tell_time('PM', 8, 22, 42) # It is 8:22:42 PM
tell_time('FOO', 8, 22, 42) # Invalid time
tell_time(8, 22, 42) # Invalid time

131

You can only specify one value and decompose differently your conditions.

def tell_time(*time):
match time:

case ['AM', hour]:
print(f'It is morning and it is {hour}')

case ['AM', hour, minute]:
print(f'It is morning and it is {hour}:{minute}')

case ['AM', hour, minute, second]:
print(f'It is morning and it is {hour}:{minute}:{second}')

Here we match 'PM' and any other parts
case ['PM', *_]:

print('It is the afternoon!')
case _:

print('Invalid time')

tell_time('AM', 8) # It is morning and it is 8
tell_time('AM', 8, 22) # It is morning and it is 8:22
tell_time('PM') # It is the afternoon!
tell_time('PM', 8, 22, 42) # It is the afternoon!
tell_time('FOO', 8, 22, 42) # Invalid time
tell_time(8, 22, 42) # Invalid time

Conditions
You can also add a condition within your pattern.

def tell_time(*time):
match time:

Here the line is split with `\` for
formatting purpose, but you can
obviously keep it in one line
case [('AM'|'PM') as day_period, hour] \
if hour >= 0 and hour <= 12:

print(f'It is {hour} {day_period}')
case _:

print('Invalid time')

tell_time('AM', 8) # It is 8 AM
tell_time('PM', 8) # It is 8 PM
tell_time('AM', 22) # Invalid time
tell_time('PM', -3) # Invalid time
tell_time('AM') # Invalid time
tell_time('PM') # Invalid time

132

Object matching
Another interesting feature of match cases in Python is the possibility to match an object.

class User:
def __init__(self, email, name=None):

self.email = email
self.name = name

def describe_user(user):
match user:

case User(email='admin@admin.com', name='Admin'):
print('admin')

case User(email='michael@office.com', name='Michael'):
print('boss')

case User(email='dexter.morgan@email.com'):
print('serial killer')

case _:
print('invalid user')

describe_user(User("admin@admin.com", "Admin")) # admin
describe_user(User("michael@office.com", "Michael")) # boss
describe_user(User(

"dexter.morgan@email.com",
"Dexter"

)) # serial killer
describe_user(User("dexter.morgan@email.com")) # serial killer
describe_user(User("some-unknown-user@email.com")) # invalid user
describe_user(12) # invalid user

133

This is the equivalent:

class User:
def __init__(self, email, name=None):

self.email = email
self.name = name

def describe_user(user):
if (

isinstance(user, User)
and user.email == "admin@admin.com"
and user.name == "Admin"

):
print("admin")

elif (
isinstance(user, User)
and user.email == "michael@office.com"
and user.name == "Michael"

):
print("boss")

elif (
isinstance(user, User)
and user.email == "dexter.morgan@email.com"

):
print("serial killer")

else:
print("invalid user")

describe_user(User("admin@admin.com", "Admin")) # admin
describe_user(User("michael@office.com", "Michael")) # boss
describe_user(User("dexter.morgan@email.com", "Dexter")) # serial killer
describe_user(User("dexter.morgan@email.com")) # serial killer
describe_user(User("some-unknown-user@email.com")) # invalid user
describe_user(12) # invalid user

Which is way more verbose and less readable. If you want to use positional arguments in your
patterns you can check this link.

134

https://docs.python.org/3/whatsnew/3.10.html#patterns-with-positional-parameters

